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For f # C[&1, 1], let Hm, n( f, x) denote the (0, 1, ..., m) Hermite�Feje� r (HF)
interpolation polynomial of f based on the Chebyshev nodes. That is, Hm, n ( f, x) is
the polynomial of least degree which interpolates f (x) and has its first m derivatives
vanish at each of the zeros of the nth Chebyshev polynomial of the first kind. In
this paper a precise pointwise estimate for the approximation error |H2m, n ( f, x)
& f (x)| is developed, and an equiconvergence result for Lagrange and (0, 1, ..., 2m)
HF interpolation on the Chebyshev nodes is obtained. This equiconvergence result
is then used to show that a rational interpolatory process, obtained by combining
the divergent Lagrange and (0, 1, ..., 2m) HF interpolation methods on the
Chebyshev nodes, is convergent for all f # C[&1, 1]. � 2000 Academic Press

1. INTRODUCTION

Suppose

X=[xk, n : k=1, 2, ..., n; n=1, 2, 3, ...]

is a triangular matrix such that, for all n,

1�x1, n>x2, n> } } } >xn, n� &1,

and let f be a real-valued function defined on the interval [&1, 1]. Then,
for each integer m�0, there exists a unique polynomial Hm, n (X, f, x) of
degree at most (m+1) n&1 which satisfies

{Hm, n (X, f, xk, n)=f (xk, n),
H (r)

m, n(X, f, xk, n)=0,
1�k�n,
1�r�m, 1�k�n.
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Hm, n (X, f, x) is referred to as the (0, 1, ..., m) Hermite�Feje� r (HF) inter-
polation polynomial of f (x). Observe that H0, n (X, f, x) is the well-known
Lagrange interpolation polynomial of f (x).

A classic result of Faber [4] states that for any matrix X, there exists
f # C[&1, 1] such that

lim
n � �

&H0, n (X, f, x)& f (x)&{0,

where & f (x)& denotes the supremum norm on [&1, 1]. On the other hand,
if T denotes the matrix of Chebyshev nodes

T={xk, n=cos \(2k&1) ?
2n + : k=1, 2, ..., n; n=1, 2, 3, ...= ,

and if the modulus of continuity |($)=|($; f ) of f is defined by

|($)=|($; f )=sup [ | f (x)& f ( y)| : x, y # [&1, 1], |x& y|�$],

then there exists a number c (independent of f and n) such that

&H0, n (T, f, x)& f (x)&�c log n |(1�n) (1.1)

for all f # C[&1, 1] and n�2. (See, for example, Szabados and Ve� rtesi
[14, Chap. 1].) Thus Lagrange polynomials based on the Chebyshev nodes
T converge uniformly to f under the relatively mild condition |(1�n)=
o((log n)&1), and so T provides a good choice of a node system for
Lagrange interpolation. With regard to pointwise error estimates for
Lagrange interpolation on T, Kis [7] showed there exists a number k0 ,
independent of f, n and x, so that

|H0, n (T, f, x)& f (x)|�k0 _log n | \- 1&x2

n ++ :
n

i=1

1
i

| \ i
n2+& (1.2)

for all f # C[&1, 1], n�2 and x # [&1, 1]. Note that (1.1) follows from
(1.2) by |(- 1&x2�n)�|(1�n) and

| \ i
n2+=| \ i

n
_

1
n+�\ i

n
+1+ | \1

n+ .

The study of higher-order HF interpolation is motivated by the famous
result of Feje� r [5] that if f # C[&1, 1], then &H1, n (T, f, x)& f (x)& � 0 as
n � �. A discussion of error estimates (both uniform and pointwise) for
(0, 1) HF interpolation on T is presented in Goodenough and Mills [6].
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For (0, 1, 2) HF interpolation, Szabados and Varma [13] showed that
for any matrix X, H2, n (X, f, x) cannot converge uniformly to f (x) for all
f # C[&1, 1]. This result was generalized to (0, 1, ..., 2m) HF interpolation
for any m by Szabados [12], whose results showed that for any X, there
exists f # C[&1, 1] such that

lim
n � �

&H2m, n (X, f, x)& f (x)&{0.

A pointwise error estimate for (0, 1, 2) HF interpolation on the Chebyshev
nodes was obtained by Byrne et al. [1], who showed that there is a
number k1 , independent of f, n and x, so that

|H2, n (T, f, x)& f (x)|

�k1 _(Tn (x))2 \log n | \- 1&x2

n ++ :
n

i=1

1
i

| \ i
n2+++| \ |Tn (x)|

n +&
(1.3)

for all f # C[&1, 1], n�2 and x # [&1, 1]. Here Tn (x) denotes the nth
Chebyshev polynomial of the first kind,

Tn (x)=cos(n arccos x), &1�x�1,

whose zeros are cos((2k&1) ?�(2n)), 1�k�n. Since the right-hand side of
(1.3) vanishes at the zeros of Tn (x), the error estimate (1.3) reflects the fact
that H2, n (T, f, x) interpolates f (x) at these zeros. Further, since
|Tn (x)|�1 on [&1, 1], it follows, as with Lagrange interpolation on the
Chebyshev nodes, that the polynomials H2, n (T, f, x) converge uniformly to
f (x) on [&1, 1] if |(1�n)=o((log n)&1).

The first aim of this paper is to generalize and sharpen (1.2) and (1.3)
to HF interpolation of arbitrary even order on T. The following result will
be established in Section 3.

Theorem 1. Suppose f # C[&1, 1]. Then, for m�0, n�2 and
x # [&1, 1],

|H2m, n (T, f, x)& f (x)|=O(1) _ |Tn (x)|2m+1 \log n | \- 1&x2

n +
+ :

n

i=1

1
i

| \ i
n2+++| \ |Tn (x)|

n +& , (1.4)

where the O(1) term depends only on m.
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We remark that for Lagrange interpolation, Kis' result (1.2) is a conse-
quence of our Theorem 1. To see this, use |Tn (x)|�1 in (1.4), together
with the result

| \1
n+= :

n

i=1

1
n

| \n
i
_

i
n2+

� :
n

i=1

1
n \

n
i
+1+ | \ i

n2+�2 :
n

i=1

1
i

| \ i
n2+ . (1.5)

Also note that for m=1, (1.4) is a slightly stronger result than (1.3)
because it incorporates an additional factor of |Tn (x)| into part of the
right-hand side. Finally, observe that from (1.4) it follows that for any
m�0, the polynomials H2m, n (T, f, x) converge uniformly to f (x) whenever
|(1�n)=o((log n)&1).

Our second aim in this paper is to study the equiconvergence behaviour
of Lagrange and (0, 1, ..., 2m) HF interpolation on the Chebyshev nodes. In
this regard, G. Min (personal communication to T. M. Mills, 1994) showed
that if f # C[&1, 1], then

lim
n � �

(H2, n (T, f, x)& f (x))& 1
2 (Tn (x))2 (H0, n (T, f, x)& f (x))=0

uniformly for &1�x�1. Now, for m=1, 2, 3, ..., let

am=
(2m)!

22m (m!)2 . (1.6)

The following extension and generalization of Min's result will be proved
in Section 4.

Theorem 2. Suppose f # C[&1, 1]. Then, for m�1 and x # [&1, 1],

|(H2m, n (T, f, x)& f (x))&am(Tn (x))2m (H0, n (T, f, x)& f (x))|

=O(1) _ |Tn (x)|2m+1 \| \- 1&x2

n ++ :
n

i=1

1
i 2 | \ i

n2++
+| \ |Tn (x)|

n +& , (1.7)

where the O(1) term is dependent only on m.

Observe that the right-hand side of (1.7) is O(1) |(1�n), and so
H2m, n (T, f, x) � f (x) as n � � if and only if (Tn (x))2m (H0, n (T, f, x)&
f (x)) � 0, where this can be interpreted in either the pointwise or uniform
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sense. We conclude, again in either the pointwise or uniform sense, that if
limn � � H0, n (T, f, x)= f (x), then limn � � H2m, n (T, f, x)= f (x). For the
converse, note that if x=cos( p?�q), where p, q are integers, and if
Tn (x){0, then

|Tn (x)|= } cos \np?
q +}= } sin \(q&2np) ?

2q +}� } sin \ ?
2q+}�

1
q

.

Thus, by (1.7), if x=cos( p?�q) where p, q are integers, and if limn � �

H2m, n (T, f, x)= f (x), then limn � � H0, n (T, f, x)= f (x). It seems to be an
open question as to whether this result can be extended, either pointwise
or uniformly, to all x # [&1, 1].

Theorem 2 has a second interpretation, in terms of a rational inter-
polatory method. Define

Wm, n (x)=1&am (Tn (x))2m,

and note that am�1�2 for m�1, so that Wm, n (x)�1�2 for &1�x�1.
Now, given f # C[&1, 1], define the rational function Rm, n ( f, x) by

Rm, n ( f, x)=
1

Wm, n (x)
(H2m, n (T, f, x)&am (Tn (x))2m H0, n (T, f, x)). (1.8)

Observe that Rm, n ( f, x) has numerator of degree no greater than
(2m+1) n&1 and denominator of degree 2mn, and that Rm, n ( f, x) inter-
polates f at the Chebyshev nodes (which are the zeros of Tn (x)). For
m=1, 2, Xu [15] showed that there are constants cm (independent of f, n
and x) so that, if xk=cos((2k&1) ?�(2n)), then

|Rm, n ( f, x)& f (x)|�cm \(Tn (x))2

n
:
n

k=1
_| \- 1&x2

k

n +
+| \ 1

k2+&+| \ |Tn (x)|
n ++ (1.9)

for all f # C[&1, 1], n�1 and x # [&1, 1]. This estimate reflects the fact
that Rm, n ( f, x) interpolates f at the zeros of Tn (x). Also, since

:
n

k=1 _| \- 1&x2
k

n ++| \ 1
k2+&

� :
n

k=1
_| \1

n++\ n
k2+1+ | \1

n+&=O(n) | \1
n+ ,
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it follows from (1.9) that for m=1, 2,

&Rm, n ( f, x)& f (x)&=O(1) |(1�n),

and so the divergent (0, 1, ..., 2m) and (0) HF processes have been com-
bined to give an interpolation method that converges for all f # C[&1, 1].
Note that work with rational interpolatory schemes of a similar nature has
been carried out by Byrne et al. [1], Meir [9], and Xu [16].

Our result concerning the rational interpolatory operator defined by
(1.8) is the following corollary, which is obtained simply by dividing
through (1.7) by Wm, n (x).

Corollary. Suppose f # C[&1, 1]. Then, for m�1 and x # [&1, 1],

|Rm, n ( f, x)& f (x)|

=O(1) _ |Tn (x)|2m+1 \| \- 1&x2

n ++ :
n

i=1

1
i 2 | \ i

n2+++| \ |Tn (x)|
n +& ,

(1.10)

where the O(1) term is dependent only on m.

Observe that (1.10) shows the approximation error vanishes at the nodes
of interpolation, and also demonstrates that

&Rm, n ( f, x)& f (x)&=O(1) |(1�n).

Thus, for each m, the rational interpolatory scheme defined by (1.8) com-
bines the divergent (0, 1, ..., 2m) HF and Lagrange methods on the
Chebyshev nodes to form a new interpolatory process that converges
uniformly for all f # C[&1, 1].

2. PRELIMINARY RESULTS

In this section we collect together some results, mostly of a technical
nature, that will be needed for the proofs of the theorems in Sections 3 and
4. Our main result is Theorem 3, which plays a key role in the proofs of
Theorems 1 and 2 and is also of interest in its own right.

For an arbitrary interpolation matrix X, and f defined on [&1, 1], the
(0, 1, ..., m) HF interpolation polynomial of f can be written as

Hm, n (X, f, x)= :
n

k=1

f (xk, n) Ak, m, n (X, x), (2.1)
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where Ak, m, n (X, x) is the unique polynomial of degree at most
(m+1) n&1 such that

A(r)
k, m, n(X, xj, n)=$0, r $k, j , 1�k, j�n, 0�r�m.

(The Ak, m, n (X, x) are referred to as the fundamental polynomials for
(0, 1, ..., m) HF interpolation on X.) We will henceforth be concerned solely
with the Chebyshev nodes, and so for the remainder of this paper we adopt
the shortened notation Hm, n ( f, x)=Hm, n (T, f, x), Ak, m, n (x)=Ak, m, n (T, x),
%k=%k, n=(2k&1) ?�(2n) and xk=xk, n=cos %k . In the first two lemmas
we develop a useful representation formula for the fundamental polynomials
Ak, 2m, n (x).

Lemma 1. For r=0, 1, 2, ..., there exist positive constants bp, r , 0�p�r,
so that

d 2r

dx2r (cot x)= :
r

p=0

bp, r cot2p+1 x. (2.2)

Proof. We use induction. If r=0, the lemma is clearly true, and if it
holds for r=s, then

d 2s+2

dx2s+2 (cot x)=
d 2

dx2 \ :
s

p=0

bp, s cot2p+1 x+
=&

d
dx \ :

s

p=0

bp, s (2p+1)(cot2p x+cot2p+2 x)+
= :

s

p=0

bp, s (2p(2p+1) cot2p&1 x+2(2p+1)2 cot2p+1 x

+(2p+1)(2p+2) cot2p+3 x)

= :
s+1

p=0

bp, s+1 cot2p+1 x,

say, where bp, s+1>0 for 0�p�s+1. K

For m�0, define the positive constants ar, m to be the coefficients in the
Laurent expansion

csc2m+1 %=
1

%2m+1 :
�

r=0

ar, m%2r, 0<|%|<?. (2.3)

Note that am, m=am (where am is defined by (1.6)). This is shown (using
contour integration) in Byrne et al. [3], and can also be demonstrated by
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equating coefficients of %&1 in the Laurent expansions about 0 of both sides
of the identity

csc2n+1 %&
2n&1

2n
csc2n&1 %=&

1
2n

d
d%

(cot % csc2n&1 %).

The recurrence relation

an, n&
2n&1

2n
an&1, n&1=0

is obtained, from which the explicit formula for am, m follows immediately.

Lemma 2. The fundamental polynomials for (0, 1, ..., 2m) HF interpola-
tion on T can be written as

Ak, 2m, n (cos %)=(&1)k&1 cos2m+1 n%

_ :
m

r=0

:
r

p=0

am&r, m bp, r

(2n)2r+1 (2r)! _cot2p+1 1
2

(%+%k)

&cot2p+1 1
2

(%&%k)& , (2.4)

where the am&r, m are defined by (2.3) and the bp, r are given by (2.2).

Proof. As shown in the proof of Theorem 1 of Byrne et al. [3],

Ak, 2m, n (cos %)=S2m, n (%+%k)+S2m, n (%&%k),

where

S2m, n (%)=
1
2

sin2m+1 n% :
m

r=0

am&r, m

n2r+1 (2r)!
d 2r

d%2r cot
%
2

.

(The derivation of this result relies on work of Kre? [8].) The lemma
is then established by substituting (2.2) into this representation of
Ak, 2m, n (cos %). K

Next, for each x # [&1, 1], write x=cos %, where 0�%�?, and choose
j such that

min[ |%k&%| : 1�k�n]=|% j&%|. (2.5)

The following three lemmas are based on results of Kis [7].
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Lemma 3. If j is defined by (2.5) and f # C[&1, 1], then

| f (xk)& f (x)|={O(1) | \ |cos n%|
n + ,

O(1) _| \i sin %
n ++| \ i 2

n2+& ,

if k= j,

if i=|k& j |�1,
(2.6)

where the O(1) terms are independent of all variables.

Proof. Suppose k= j. By Goodenough and Mills [6, Lemma 3],

|%j&%|�
?
2n

|cos n%|,

and so

| f (xj)& f (x)|�|( |xj&x| )�|( |%j&%| )�| \ ?
2n

|cos n%|+
=O(1) | \ |cos n%|

n + .

The case i=|k& j |�1 of (2.6) is due to Kis [7, Lemma 1]. K

Lemma 4. If j is defined by (2.5) and f # C[&1, 1], then

{ | f (xk+1)& f (xk)|=O(1) _| \sin %
n ++| \ i

n2+& ,

| f (xk)& f (xk&1)|=O(1) _| \sin %
n ++| \ i

n2+& ,

if i=k& j�1,

if i= j&k�1,
(2.7)

where the O(1) term is independent of all variables.

Proof. See Kis [7, Lemma 2]. K

Lemma 5. If j is defined by (2.5), then

|Ak, 0, n (x)|={O(1),
O(1) |Tn (x)|�i,

if k= j,
if i=|k& j |�1,

(2.8)

{ |Ak, 0, n (x)+Ak+1, 0, n (x)|=O(1) |Tn (x)|�i 2,
|Ak, 0, n (x)+Ak&1, 0, n (x)|=O(1) |Tn (x)|�i 2,

if i=k& j�1,
if i= j&k�1.

(2.9)

Here, the O(1) terms are independent of all variables.

271HERMITE�FEJE� R INTERPOLATION



Proof. The statements (2.8) and (2.9) are established by Kis [7,
Lemmas 3, 4], but without the factors of |Tn (x)| on the right-hand sides.
However, it is evident from the proofs given by Kis that the factor can be
included as shown above. K

The following elementary inequality will be needed.

Lemma 6. If 0�:, ;�?, then

sin 1
2(:+;)�sin 1

2 |:&;|.

We aim now to generalize the results of Lemma 5 to the fundamental
polynomials for HF interpolation of arbitrary even order. The following
result, which is crucial to this goal, helps to explain quantitatively why the
Lagrange and (0, 1, ..., 2m) HF interpolation methods on T have similar
approximation properties.

Theorem 3. If am and j are defined by (1.6) and (2.5), respectively, then
for i=|k& j |�1,

Ak, 2m, n (x)=am (Tn (x))2m Ak, 0, n (x)+O(1)
|Tn (x)|2m+1

i 3 , (2.10)

where the O(1) term depends only on m.

Proof. By (2.4),

Ak, 2m, n (x)=(&1)k&1 (Tn (x))2m+1 :
m

r=0

:
r

p=0

am&r, mbp, r

(2n)2r+1 (2r)!

__cot
1
2

(%+%k)&cot
1
2

(%&%k)&
_ :

2p

q=0

cot2p&q 1
2

(%+%k) cotq 1
2

(%&%k)

and

Ak, 0, n (x)=(&1)k&1 Tn (x)
2n _cot

1
2

(%+%k)&cot
1
2

(%&%k)& .
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Thus,

Ak, 2m, n (x)=Ak, 0, n (x)(Tn (x))2m :
m

r=0

:
r

p=0

am&r, m bp, r

(2n)2r (2r)!

_ :
2p

q=0

cot2p&q 1
2

(%+%k) cotq 1
2

(%&%k)

=am, m (Tn (x))2m Ak, 0, n (x)+Bk, 2m, n (x),

say, where

Bk, 2m, n (x)=Ak, 0, n (x)(Tn (x))2m :
m

r=1

:
r

p=0

am&r, m bp, r

(2n)2r (2r)!

_ :
2p

q=0

cot2p&q 1
2

(%+%k) cotq 1
2

(%&%k).

Now, by Lemma 6,

} cot2p&q 1
2

(%+%k) cotq 1
2

(%&%k) }� 1
|sin2p&q (1�2)(%+%k) sinq (1�2)(%&%k)|

�
1

sin2p (1�2)(%&%k)
,

and if i=|k& j |�1, then

sin
1
2

|%&%k |�sin \(2i&1) ?
4n +�

2i&1
2n

�
i

2n
.

Thus, by (2.8),

|Bk, 2m, n (x)|=O(1)
|Tn (x)|2m+1

i

_ :
m

r=1

:
r

p=0

(2p+1) am&r, m bp, r

(2n)2r&2pi 2p (2r)!
=O(1)

|Tn (x)|2m+1

i 3 ,

which establishes (2.10). K

From Theorem 3, the following generalization of Lemma 5 is obtained.
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Lemma 7. If j is defined by (2.5), then

|Ak, 2m, n (x)|={O(1),
O(1) |Tn (x)|2m+1�i,

if k= j,
if i=|k& j |�1,

(2.11)

{ |Ak, 2m, n (x)+Ak+1, 2m, n (x)|=O(1) |Tn(x)| 2m+1�i 2,
|Ak, 2m, n (x)+Ak&1, 2m, n (x)|=O(1) |Tn (x)|2m+1�i 2,

if i=k& j�1,
if i= j&k�1.

(2.12)

Here, all O(1) terms depend only on m.

Proof. The first part of (2.11) follows from Szabados [12, p. 367],
where it is shown that |Ak, 2m, n (x)| is uniformly bounded for all k, n and
x. (More precise results are given in Smith [11].) The remaining parts of
the lemma follow immediately from (2.10) in conjunction with (2.8) and
(2.9). K

Before concluding this section, we note that Theorem 3 has an interest-
ing application to the Lebesgue constant 42m, n for (0, 1, ..., 2m) HF
interpolation on T, which is defined by

42m, n= max
&1�x�1

*2m, n (x),

where

*2m, n (x)= :
n

k=1

|Ak, 2m, n (x)|.

It is known (see, for example, Rivlin [10, Sect. 1.3]) that

40, n=*0, n (\1)=
2
?

log n+O(1).

Now, by (2.10) and the first part of (2.11),

*2m, n (x)=am (Tn (x))2m :
n

k=1

|Ak, 0, n (x)|+O(1)

�am40, n+O(1).
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On the other hand, also by (2.10) and the first part of (2.11),

*2m, n (\1)=am :
n

k=1

|Ak, 0, n (\1)|+O(1)

=am40, n+O(1).

Thus

42m, n=am40, n+O(1)=
2
?

(2m)!
22m (m!)2 log n+O(1). (2.13)

This result was obtained by Byrne et al. [2], with a sharper version being
developed in [3]. However, both results relied on the characterization of
42m, n as *2m, n (\1), the proof of which is quite technical (see [2,
pp. 351�357]). The above derivation of (2.13) does not depend on this
characterization.

3. PROOF OF THEOREM 1

Our proof is based on a technique that was introduced by Kis [7], and
which was also used by Byrne et al. [1]. Since H2m, n (1, x)#1, it follows
from (2.1) that

|H2m, n ( f, x)& f (x)|= } :
n

k=1

( f (xk)& f (x)) Ak, 2m, n (x) }.
For convenience, put

Uk=Uk (x)=( f (xk)& f (x)) Ak, 2m, n (x), (3.1)

so that

|H2m, n ( f, x)& f (x)|� } :
j&1

k=1

Uk }+|Uj |+ } :
n

k= j+1

Uk }
=I1+I2+I3 , say. (3.2)

(If j is 1 or n, then one of these terms is not present.)
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We first estimate I3 . If n& j is odd, then

I3�|Uj+1+Uj+2 |+|Uj+3+U j+4 |+ } } } +|Un&2+Un&1|+ |Un |. (3.3)

(If n& j is even, the final term in the sum is |Un&1+Un |.) Now, for
k= j+i, 1�i�n& j&1, it follows from (3.1) that

|Uk+Uk+1|�| f (xk)& f (x)| |Ak, 2m, n (x)+Ak+1, 2m, n (x)|

+| f (xk+1)& f (xk)| |Ak+1, 2m, n (x)|.

Thus, by employing (2.6), (2.7), (2.11), and (2.12), and the property
|(i$)�i|($) of the modulus of continuity, we have

|Uk+Uk+1|=O(1)
|Tn (x)| 2m+1

i \| \sin %
n ++| \ i

n2++ . (3.4)

(Here and subsequently, the O(1) terms depend only on m).
We next need to estimate |Un |. Now, by (2.6) and (2.11),

|Un |= | f (xn)& f (x)| |An, 2m, n (x)|

=O(1)
|Tn (x)|2m+1

n& j \| \(n& j) sin %
n ++| \(n& j)2

n2 ++
=O(1) |Tn (x)|2m+1 \| \sin %

n ++| \1
n++

=O(1) |Tn (x)|2m+1 :
n

i=1

1
i \| \sin %

n ++| \ i
n2++ , (3.5)

where the last line follows by the method used in (1.5). Since cos %=x, it
follows from (3.3), (3.4), and (3.5) that

I3=O(1) |Tn (x)|2m+1 \log n | \- 1&x2

n ++ :
n

i=1

1
i

| \ i
n2++ .

A similar estimate holds for I1 , and for I2 we have (by (2.6) and (2.11)),

I2=| f (xj )& f (x)| |Aj, 2m, n (x)|=O(1) |( |Tn (x)| �n).

The proof of Theorem 1 is now completed by substituting the above results
into (3.2).
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4. PROOF OF THEOREM 2

Since H2m, n (1, x)#H0, n (1, x)#1, it follows that

|(H2m, n ( f, x)& f (x))&am (Tn (x))2m (H0, n ( f, x)& f (x))|= } :
n

k=1

Vk } ,
where

Vk=Vk (x)=(Ak, 2m, n (x)&am (Tn (x))2m Ak, 0, n (x))( f (xk)& f (x)).

Thus

|(H2m, n ( f, x)& f (x))&am (Tn (x))2m (H0, n ( f, x)& f (x))|

� :
j&1

k=1

|Vk |+|Vj |+ :
n

k= j+1

|Vk |=J1+J2+J3 , say, (4.1)

where j is defined by (2.5). (As before, if j is 1 or n, then one of the terms
on the right-hand side of (4.1) is not present.)

We consider J3 . On writing i=k& j, j+1�k�n, it follows from (2.6)
and (2.10) that

|Vk |=O(1)
|Tn (x)|2m+1

i 3 \| \i sin %
n ++| \ i 2

n2++ ,

where the O(1) term depends only on m. Thus,

J3=O(1) |Tn (x)|2m+1 \| \sin %
n ++ :

n

i=1

1
i 2 | \ i

n2++ .

A similar estimate holds for J1 , and for J2 we have from (2.6) and (2.11),

J2=O(1) | \ |cos n%|
n + .

The result (1.7) then follows by substituting the results for J1 , J2 , and J3

into (4.1), and recalling that x=cos %.
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